Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Mol Genet Genomics ; 298(4): 823-836, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2297231

ABSTRACT

Coronavirus 2019 (COVID-19) is a complex disease that affects billions of people worldwide. Currently, effective etiological treatment of COVID-19 is still lacking; COVID-19 also causes damages to various organs that affects therapeutics and mortality of the patients. Surveillance of the treatment responses and organ injury assessment of COVID-19 patients are of high clinical value. In this study, we investigated the characteristic fragmentation patterns and explored the potential in tissue injury assessment of plasma cell-free DNA in COVID-19 patients. Through recruitment of 37 COVID-19 patients, 32 controls and analysis of 208 blood samples upon diagnosis and during treatment, we report gross abnormalities in cfDNA of COVID-19 patients, including elevated GC content, altered molecule size and end motif patterns. More importantly, such cfDNA fragmentation characteristics reflect patient-specific physiological changes during treatment. Further analysis on cfDNA tissue-of-origin tracing reveals frequent tissue injuries in COVID-19 patients, which is supported by clinical diagnoses. Hence, our work demonstrates and extends the translational merit of cfDNA fragmentation pattern as valuable analyte for effective treatment monitoring, as well as tissue injury assessment in COVID-19.


Subject(s)
COVID-19 , Cell-Free Nucleic Acids , Humans , COVID-19/diagnosis , Cell-Free Nucleic Acids/genetics
2.
Nanomaterials (Basel) ; 12(15)2022 Jul 24.
Article in English | MEDLINE | ID: covidwho-1994121

ABSTRACT

Unlike traditional small molecule drugs, fullerene is an all-carbon nanomolecule with a spherical cage structure. Fullerene exhibits high levels of antiviral activity, inhibiting virus replication in vitro and in vivo. In this review, we systematically summarize the latest research regarding the different types of fullerenes investigated in antiviral studies. We discuss the unique structural advantage of fullerenes, present diverse modification strategies based on the addition of various functional groups, assess the effect of structural differences on antiviral activity, and describe the possible antiviral mechanism. Finally, we discuss the prospective development of fullerenes as antiviral drugs.

3.
Frontiers in cardiovascular medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-1918982

ABSTRACT

Postoperative follow-up is crucial for the clinical management of patients carrying cardiovascular implantable electronic devices (CIED). However, in a plethora of underdeveloped areas of China, due to limited medical resources and associated economic costs, geographical restrictions, the outbreak of the COVID-19 pandemic, and various other reasons, the medical system is unable to meet the ever-increasing demand for long-term clinical follow-up and telemedicine services. Based on these challenges, postoperative remote follow-up of CIED based on the 5G-cloud technology support platform (5G-CTP) may have the potential to optimize the allocation of medical resources and provide patients with high-quality CIED follow-up services locally. These unique characteristics of CIED follow-up utilizing 5G-CTP are qualified to protect the safety of the patients in terms of both clinical safety and cyber security. Furthermore, during the COVID-19 pandemic, remote follow-up of CIED significantly reduces the risk of viral exposure to patients and medical staff while having the potential to improve the current situation of CIED postoperative follow-up.

5.
Sci Rep ; 11(1): 13971, 2021 07 07.
Article in English | MEDLINE | ID: covidwho-1301179

ABSTRACT

To unravel the source of SARS-CoV-2 introduction and the pattern of its spreading and evolution in the United Arab Emirates, we conducted meta-transcriptome sequencing of 1067 nasopharyngeal swab samples collected between May 9th and Jun 29th, 2020 during the first peak of the local COVID-19 epidemic. We identified global clade distribution and eleven novel genetic variants that were almost absent in the rest of the world and that defined five subclades specific to the UAE viral population. Cross-settlement human-to-human transmission was related to the local business activity. Perhaps surprisingly, at least 5% of the population were co-infected by SARS-CoV-2 of multiple clades within the same host. We also discovered an enrichment of cytosine-to-uracil mutation among the viral population collected from the nasopharynx, that is different from the adenosine-to-inosine change previously reported in the bronchoalveolar lavage fluid samples and a previously unidentified upregulation of APOBEC4 expression in nasopharynx among infected patients, indicating the innate immune host response mediated by ADAR and APOBEC gene families could be tissue-specific. The genomic epidemiological and molecular biological knowledge reported here provides new insights for the SARS-CoV-2 evolution and transmission and points out future direction on host-pathogen interaction investigation.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Coinfection/epidemiology , Genomics , Immunity, Innate , Mutation , SARS-CoV-2/genetics , Adult , COVID-19/transmission , Cytidine Deaminase/genetics , Female , Gene Expression Profiling , Genome, Viral/genetics , Humans , Male , Middle Aged , Nasopharynx/virology , Organ Specificity , SARS-CoV-2/immunology
6.
Research (Wash D C) ; 2021: 2813643, 2021.
Article in English | MEDLINE | ID: covidwho-1160985

ABSTRACT

Sensitive detection of SARS-CoV-2 is of great importance for inhibiting the current pandemic of COVID-19. Here, we report a simple yet efficient platform integrating a portable and low-cost custom-made detector and a novel microwell array biochip for rapid and accurate detection of SARS-CoV-2. The instrument exhibits expedited amplification speed that enables colorimetric read-out within 25 minutes. A polymeric chip with a laser-engraved microwell array was developed to process the reaction between the primers and the respiratory swab RNA extracts, based on reverse transcriptase loop-mediated isothermal amplification (RT-LAMP). To achieve clinically acceptable performance, we synthesized a group of six primers to identify the conserved regions of the ORF1ab gene of SARS-CoV-2. Clinical trials were conducted with 87 PCR-positive and 43 PCR-negative patient samples. The platform demonstrated both high sensitivity (95.40%) and high specificity (95.35%), showing potentials for rapid and user-friendly diagnosis of COVID-19 among many other infectious pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL